25MA102: Mathematics-II

w. e. f. Acade	mic Year:	2025-26								
Semester:		2								
Category of th	e Course:	Basic Science								
Prerequisite:	coordinate geometry. Prior knowledge of differe Engineering Mathematics-I). Basic exposure to vector ope	ding of basic algebra, trigonometry, and ential and integral calculus (as covered in rations and properties. cal matrix operations and system of linear								
	 Logical reasoning and analytical thinking skills for interpreting mathematical relationships and problem-solving. 									
Rationale:	Mathematics-I, expanding s	to build upon the concepts introduced in tudents' analytical capabilities and problemcus on advanced mathematical tools essential								

Course Outcomes:

After Completion of the Course, Students will be able to:

	Course Outcome (CO)	RBT Level (Cognitive Domain)
CO1	Understand and apply matrix operations including echelon forms, inverse, and rank for solving systems of linear equations.	Understand, Apply
CO2	Compute eigenvalues and eigenvectors; apply Cayley-Hamilton theorem and perform matrix diagonalization to analyze quadratic forms.	Apply, Analyze
соз	Represent and manipulate complex numbers and complex functions and apply De Moivre's theorem in mathematical expressions.	Understand, Apply
CO4	Evaluate line, surface, and volume integrals using Green's, Stokes', and Gauss's theorems for physical and geometrical applications.	Apply, Analyze
CO5	Solve first-order ordinary differential equations using analytical methods like separation of variables, integrating factors, and exact methods.	Apply, Analyze
CO6	Solve first-order ordinary differential equations using numerical methods such as Euler and Runge-Kutta methods.	Apply, Analyze

Teaching and Evaluation Scheme:

Teaching Scheme					eme	Examination Scheme				
	L	т	P	С	Hrs/Week	ΙE	Theory	CIA	Practical	Total Marks
	03	01	-	04	04	40	60	30	-	130

IE: Internal Evaluation
CIA: Continuous Internal Assessment

Theory: Theory Exam (End Semester)
Practical: Practical Exam (End Semester)

Detailed Syllabus:

Topic	Hrs.	% of Weightage
UNIT: 1 Matrix Theory and Applications of Matrices:	10	22%
Definition and Special Types of matrices, Determinant, Rank, Inverse,		
Row Echelon Form and Reduce Row Echelon Form, Homogeneous and		
non-homogeneous System of linear equation.		
Applications: Solution of System of linear equations		
UNIT: 2 Eigenvalue and Eigenvector:	06	13%
Definition, Properties, Algebraic Multiplicity, Geometric Multiplicity,		
Cayley-Hamilton theorem, Similarity of Matrices, Diagonalization,		
Applications: Quadratic form		
UNIT: 3 Complex Numbers and Complex Functions	06	13%
Basic Concepts of Complex Numbers and Elementary functions		
(Exponential, Trigonometric, Logarithmic function and Complex Exponent		
function, Hyperbolic functions), De Moivre's Theorem (without proof).		
UNIT: 4 Vector Integral Calculus	08	20%
Line Integral, Surface integral, Volume Integral, Green's Theorem		
(without proof), Stoke's Theorem (without proof) and Gauss's Divergence		
Theorem (without proof).		
UNIT: 5 First Order Ordinary Differential Equations:	10	22%
Basic concepts- formation and solution, Variable Separable,		
Homogeneous equation, Exact differential equations, Reduction of Non		
exact differential equation using Integrating factor, Linear differential		
equations, Bernoulli equations.		
UNIT: 6 Numerical solutions of Differential Equations:	05	10%
Euler Method, Modified Euler Method and Runge-Kutta Method of fourth		
order		
Total	45	100

Text/Reference Books:

- 1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006.
- 2) W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.
- 3) D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 4) S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 5) E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.
- 6) E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- 7) J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.
- 8) B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 9) Howard Anton, Irl Bivens, Stephens Davis, Calculus, 10e, Wiley, 2016.
- 10) AICTE's Prescribed Textbook: Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variable), Khanna Book Publishing Co.

- 11) Shanti Narayan and P.K. Mittal, A textbook of matrices, S Chand publications, 2010.
- 12) Ruel V. Churchill, Complex variable and Applications, 9th edition, Mc Graw Hill education, 2013.
- 13) Daniel A. Murray, Introduction course in differential equations, Khosla publishing house, 2021.

List of Tutorials:

Sr. No.	Tutorial Content	Hours
1	Problem solving on "Matrix Theory and Applications of Matrices".	3
2	Problem solving on "Eigenvalue and Eigenvector".	3
3	Problem solving on "Complex Numbers and Functions"	2
4	Problem solving on "Vector Integral Calculus".	3
5	Problem solving on "First Order Ordinary Differential Equations"	3
6	Problem solving on "Numerical solutions of Differential Equations"	1
	Total	15 Hrs.

Course Outcomes Mapping:

со	Course Outcome (CO)	POs/ PSOs Mapped	Cognitive Level (RBT)	Knowledge Category	Lecture Sessions	Tutorial Sessions
CO1	Understand and apply matrix operations including echelon forms, inverse, and rank for solving systems of linear equations.	PO1, PO2, PO4, PSO1, PSO2	Understand, Apply	Conceptual	10	3
CO2	Compute eigenvalues and eigenvectors; apply Cayley-Hamilton theorem and perform matrix diagonalization to analyze quadratic forms.	PO1, PO2, PO4, PSO1, PSO2	Apply, Analyze	Procedural	6	3
CO3	Represent and manipulate complex numbers and complex functions and apply De Moivre's theorem in mathematical expressions.	PO1, PO2, PSO1, PSO2	Understand, Apply	Conceptual	6	2
CO4	Evaluate line, surface, and volume integrals using Green's, Stokes', and Gauss's theorems for physical and geometrical applications.	PO1, PO2, PO3 PO4, PO12, PSO1	Apply, Analyze	Procedural	8	3

CO5	Solve first-order ordinary differential equations using analytical methods like separation of variables, integrating factors, and exact methods.	PO1, PO2, PO4, PO12, PSO1, PSO2	Apply, Analyze	Conceptual	10	3
CO6	Solve first-order ordinary differential equations using numerical methods such as Euler and Runge-Kutta methods.	PO1, PO2, PO3, PO12, PSO1, PSO2	Apply, Analyze	Procedural	5	1

Mapping of COs with POs & PSOs:

60	РО											PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	3
CO2	3	3	0	3	0	0	0	0	0	0	0	0	3	3
CO3	3	3	0	0	0	0	0	0	0	0	0	0	3	3
CO4	3	3	2	3	0	0	0	0	0	0	0	3	3	0
CO5	3	3	0	3	0	0	0	0	0	0	0	3	3	3
CO6	3	3	2	0	0	0	0	0	0	0	0	3	3	3

3: High, 2: Medium, 1: Low